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Uncertainty is inevitable, and
“state dependent”
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o, p, B arefixed.

A toy dynamical system that illustrates

the problem of “deterministic chaos” that
we encounter in weather prediction models.
Forecast uncertainty grows more quickly for
some initial conditions than others.

from Tim Palmer’s chapter in 2006 book
“Predictability of Weather and Climate”



Amount of uncertainty depends on weather regime.

High wind uncertainty; Lower wind uncertainty;
timing & strength of trough. no major weather systems around.
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Forecast uncertainty also contributed
by model imperfections

“Parameterizations’

Much of the weather occurs at
scales smaller than those resolved
by the weather forecast model. A
forecast model must treat, or
“parameterize” the effects of the
sub-gridscale on the resolved scale.

Problems: (1) no variability at
scales smaller than the box from
this model; (2) parameterizations
are approximations, and often not
good ones. !




“Ensemble prediction”
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Desirable properties of
probabilistic forecasts & common
methods to evaluate them.

* Reliability/calibration: when you say X%, it will happen
X% of the time.

— calibration: observed and ensemble considered samples
from the same probability distribution

e Specificity of the forecast, i.e., sharpness. Deviations
from the climatological. We want forecasts as sharp as
they can be as long as they’re reliable.



Observed Frequency (%)

Reliability diagrams
(built with lots of samples)

Raw Ensemble

Reliability, Day 2 Precip. at 2.5 mm
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Curve tells you what

the observed frequency

was each time you

forecast a given probability.
| This curve ought to lie

along y =x line. Here this
shows the ensemble-forecast
system over-forecasts the
probability of light rain.
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Observed Frequency (%)

Reliability diagrams

Raw Ensemble
Reliability, Day 2 Precip. at 2.5 mm
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Observed Frequency (%)

Reliability diagrams

Raw Ensemble

Reliability, Day 2 Precip. at 2.5 mm
100 o, T T T T T T T T BSS = Brier Skill Score
80 f’; 50 - /// } BSS — BS(Clii?fzo)—BS(Forecast)
& T e 1 BS(Climo)— BS(Perfect)
g 00 10 20 30 40 50 60 70 1
[ & Forecast Probability (Z) :Z
60 // —
| BSS = «—— : BS(®) measures the
—0.049 P | Brier Score, which you
] can think of as the
squared error of a
] probabilistic forecast.
[ Perfect: BSS=1.0
0 U U R Climatology: BSS = 0.0
20 40 60 80 100

Forecast Probability (%)

10
Ref: Wilks text, Statistical Methods in the Atmospheric Sciences



Probability Density
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“Sharpness”
measures the
specificity of

the probabilistic
forecast. Given

two reliable forecast
systems, the one
producing the
sharper forecasts

is preferable. Might
be measured with
standard deviation of
ensemble about its
mean.

But: don’t want
sharp if not reliable.
Implies unrealistic
confidence.
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“Spread-error” relationships
are important, too.

Small-spread ensemble forecasts should have less ensemble-mean error than
large-spread forecasts, in some sense a conditional reliability dependent upon
amount of sharpness.
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General benefits from
use of ensembles

* Averaging of many forecasts reduces error.

* Proper use of probabilistic information

permits better decisions to be made based on
risk tolerance.



Dangers of “ensemble averaging”
(smoothes out meteorological features)

individual members

s AN\ N decision
:.’_ threshold
2 N
2 Here the ensemble tells you
something useful... a wind ramp is
. coming, but the exact timing is
ome = yncertain. Information lost if you
boil it down to its average. -
ensemble avereag-
b decision
§ threshold
2

time ———> 14



Two general methods of
providing you with useful
local probabilistic information

 Dynamical downscaling (run high-resolution
ensemble systems to provide local detail).

 Statistical downscaling (post-process coarser

resolution model to fill in the local detail and
missing time scales).



Potential value of dynamic downscaling

An example from high-resolution ensembles run during the
NSSL-SPC Hazardous Weather Test Bed, forecast initialized 20 May 2010

http://tinyurl.com/2ftbvgs

32-km SREF P > 0.5” 4-km SSEF P >0.5“ Verification

)

|;. |;' l;l
100521 /D000V027 SREF 6—hr QPF Pr 100521 /0000¥024 SSEF PROB EH .9 20100521 /00 UTC 6—HR QPE >
10 30 10 30 30 7 3 0.50 1.00 1.50 2,00 3.00 5.00 7.00 8.00

With warm-season precipitation, coarse resolution and parameterized convection of
operational SREF clearly is inferior to the 4-km, resolved convection in SSEF.
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We still have a way to go to provide sharp,
reliable forecasts directly from hi-res.
ensembles. Case: Arkansas floods

An example from NSSL-SPC Hazardous Weather Test Bed, forecast initialized 10 June 2010
http://tinyurl.com/34568hp

SREF P > 2.0” 4-km SSEF P >2.0“ Verification (radar QPE)

5 £ T e %
100611 /0600¥033 SREF 6—hr QPF Prob »2.0" 100611 /0600¥030 SSEF PROB BHR QPF == 2. in
10 30 = 10 30 30

A less than 30% probability of > 2 inches rainfall from SSEF, while better than SREF,
probably does not set off alarm bells in forecasters’ heads.



Statistical downscaling

Direct probabilistic forecasts from a global model may be
unreliable, and perhaps too coarse time granularity for your
purposes (winds every 3 h).

Assume you have:

— along time series of wind measurements.

— along time series of forecasts from a fixed model that hasn’t changed
(“reforecasts”)

Can correct for discrepancies between forecast and observed using
past data, adjust today’s forecast, quantify uncertainty.

Proven technique in “MOS” — what’s new here is the especially long
time series of ensemble forecasts, helpful for making statistical
adjustments in long-lead and rare events.



Potential value of statistical downscaling using

“reforecasts”
(b) Ensemble—mean Precipitation (c) Logistic Regression
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Post-processing with large training data set can permit small-scale detail to be inferred
from large-scale, coarse model fields. 19



An example of a statistical correction technique using those reforecasts

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Today’s forecast (& observed
* 26 Nov 2005

24—48h Forecast Analyzed
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eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

For each pair (e.g. red box), on the
left are old forecasts that are
somewhat similar to this day’ s
ensemble-mean forecast. The
boxed data on the right, the
analyzed precipitation for the
same dates as the chosen analog
forecasts, can be used to
statistically adjust and downscale
the forecast.

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Analog approaches like this
may be particularly useful for s e 24-45h Foreces =Trmsr=1 2446 rorecus s 2446 Foreces =
hydrologic ensemble applications, | S '
where an ensemble of weather
realizations is needed as inputs to
a hydrologic ensemble streamflow
system.




A next-generation reforecast

Model: NCEP GFS ensemble that will be
operational later in 2011.

Reforecast: at 00Z, compute full 10-member
forecast, every day, for last 30 years out to 16

days.

Continue to generate real-time forecasts with
this model for next ~5 years.

Reforecasts computed by late 2011.
More details in supplementary slides.



Making reforecast data
available to you

e Store 130 TB (fast access) of “important” agreed-
upon subset of data.

— Will design software to serve this out to you in several manners (http,
ftp, OPeNDAP, etc.).

e Archive full 00Z reforecasts and initial conditions
~=778 TB. DOE expected to store this for us (slow
access).



Expected fields in the “fast” archive

Mean and every member

For wind energy, 10-m and 80 m winds, 80-m wind
power.

3-hourly out to 72h, then 6-hourly thereafter.
Lots of other data (details in backup slides)



Conclusions

 Ensembles may provide significant value-
added information to you.

* I’'m interested in talking with you more to
understand how ensembles information
(especially reforecasts) can be tailored to help

with your decision making.



Backup slides



Expected fields we’ll save in the
reforecast “fast” archive

* Mandatory level data:
— Geopotential height, temperature, u, v, at 1000, 925, 850,

700, 500, 300, 250, 200, hPa.
— Specific humidity at 1000, 925, 850, 700, 500, 300, 250,
200

* PV(Km?kg!s?!)on6=320K surface.

* Wind components, potential temperature on 2 PVU
surface.



Fixed fields to save once

— field capacity
— wilting point
— land-sea mask

— terrain height



Proposed single-level fields for “fast” archive

. Surface pressure (Pa)

. Sea-level pressure (Pa)

. Surface (2-m) temperature (K)

. Skin temperature (K)

. Maximum temperature since last storage time (K)

. Minimum temperature since last storage time (K)

. Soil temperature (0-10 cm; K)

. Volumetric soil moisture content (proportion, 0-10 cm) —
. Total accumulated precipitation since beginning of integration (kg/m?)
. Precipitable water (kg/m?, vapor only, no condensate)

. Specific humidity at 2-m AGL (kg/kg; instantaneous) —

. Water equivalent of accumulated snow depth (kg/m?) —
. CAPE (J/kg)

«  CIN (J/kg)

. Total cloud cover (%)

. 10-m u- and v-wind component (m/s)

. 80-m u- and v-wind component (m/s)

. Sunshine duration (min)

. Snow depth water equivalent (kg/m?)

. Runoff

. Solid precipitation

. Liquid precipitation

. Vertical velocity (850 hPa)

. Geopotential height of surface

. Wind power (=windspeed? at 80 m*density)



Proposed fields for “fast” archive

* Fluxes (W/m?; average since last archive time)
— sensible heat net flux at surface
— latent heat net flux at surface
— downward long-wave radiation flux at surface
— upward long-wave radiation flux at surface
— upward short-wave radiation at surface
— downward short-wave radiation flux at surface
— upward long-wave radiation at nominal top
— ground heat flux.



Uncalibrated ensemble?
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Here, the observed is outside of the range of the ensemble,
which was sampled from the pdf shown. Is this a sign of
a poor ensemble forecast?
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Uncalibrated ensemble?
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Here, the observed is outside of the range of the ensemble,
which was sampled from the pdf shown. Is this a sign of
a poor ensemble forecast?
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Fraction
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With lots of samples from many situations, can evaluate the characteristics of the ensemble.

OK
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Happens when
observed is
indistinguishable
from any other
member of the
ensemble. Ensemble
hopefully is reliable.
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observed too
commonly is
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Happens when

there are either
some low and some
high biases, or when
the ensemble doesn’t
spread out enough.

ref: Hamill, MWR, March 2001



